ISAR Imaging of Ship Targets Based on an Integrated Cubic Phase Bilinear Autocorrelation Function

نویسندگان

  • Jibin Zheng
  • Hongwei Liu
  • Zheng Liu
  • Qing Huo Liu
چکیده

For inverse synthetic aperture radar (ISAR) imaging of a ship target moving with ocean waves, the image constructed with the standard range-Doppler (RD) technique is blurred and the range-instantaneous-Doppler (RID) technique has to be used to improve the image quality. In this paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic phase signals (CPSs) after the motion compensation and a RID ISAR imaging algorithm is proposed based on the integrated cubic phase bilinear autocorrelation function (ICPBAF). The ICPBAF is bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise performance with a reasonable computational cost. Through simulations and analyses with the synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(Microsoft Word - ISAR Imaging of Targets with Complex Motion Based on the Chirp Rate \250CQuadratic Chirp Rate Distribution)

In inverse synthetic aperture radar (ISAR) imaging of targets with complex motion such as fluctuating ships with oceanic waves and high maneuvering airplanes, the azimuth echo signals can be modeled as cubic phase signals (CPSs) after the migration compensation. The chirp rate (CR) and the quadratic chirp rate (QCR) are two important physical quantities of the CPS, which deteriorate the azimuth...

متن کامل

ISAR Imaging of Ship Target with Complex Motion Based on New Approach of Parameters Estimation for Polynomial Phase Signal

ISAR imaging of ships at sea with significant motion results in the Doppler frequency shift for the received signal is time-varying, which will deteriorate the ISAR image quality for the Range-Doppler (RD) algorithm. In this paper, the received signal is modeled as a multicomponent cubic phase signal (CPS), and a new method for estimating the parameters of CPS based on the integrated high-order...

متن کامل

ISAR Imaging of Rotating Target with Equal Changing Acceleration Based on the Cubic Phase Function

When reconstructing the ISAR image of a maneuvering target rotating approximately with the equal changing acceleration, the received signals can be considered as the multicomponent cubic phase signals. If the model of rotating with constant acceleration is used here, the errors of the reconstructed images cannot be neglected, and a lot of pseudoscatterers are produced. Hence, the ISAR imaging o...

متن کامل

A Novel Speed Compensation Method for ISAR Imaging with Low SNR

In this paper, two novel speed compensation algorithms for ISAR imaging under a low signal-to-noise ratio (SNR) condition have been proposed, which are based on the cubic phase function (CPF) and the integrated cubic phase function (ICPF), respectively. These two algorithms can estimate the speed of the target from the wideband radar echo directly, which breaks the limitation of speed measuring...

متن کامل

ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform

Inverse synthetic aperture radar (ISAR) imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS) after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017